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EXECUTIVE SUMMARY 

 
The growing popularity of mobile devices, combined with the wireless communications 

used to connect these devices to each other and the internet has allowed a Media Access 

Control (MAC) address-based tracking method to be developed for the purposes of 

collecting corridor travel times. This approach relies on recording the MAC addresses of 

bypassing devices at one location and noting the time difference between matching MAC 

addresses at a different location. Due to its significantly lower overall cost, ease of 

deployment and relatively fewer privacy concerns when compared to traditional methods, 

interest in this means of collecting travel time data is growing.  

Although MAC address-based collection techniques have significant advantages in 

most aspects, there are some drawbacks to their use. Relatively small sample size is an 

issue for some purposes – most studies using MAC address matching have found that 

they are able to capture somewhere between five to ten percent of the total vehicle 

volume. An additional, and perhaps most serious, issue is the ambiguity of accuracy due 

to the inherent properties of the MAC address broadcast protocols. Because the Bluetooth 

readers are capable of detecting MACs within a specific range, the travel times obtained 

can be thought of as zone to zone. Since these zones can be large, a certain level of 

uncertainty exists when using MAC-addressed based travel times.  

The purpose of this study is to investigate the Bluetooth travel time errors that are 

inherent to the data collection technique and the development of a robust MAC address 

sensor device (recorder).   
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A Bluetooth protocol based device was developed and tested. The current device 

design consists of three main components; (1) a Bluetooth chipset that constantly scans 

the available channels, (2) a 60 GHz ARM processor that records MACs and (3) a 

communications module that synchronizes to the UTC time and transmits data in near 

real-time (GPS + GSM). This provides an excellent base for testing mounting locations 

and various antennae as it can be mounted to signposts and signal posts and will accept a 

wide range of antenna types. The current design allows the device to function for up to a 

week without external power using one 6-cell LiPo pack (15.6Ah capacity @ 3.7V). The 

device can use up to two battery packs at a time, resulting in a maximum runtime of two 

weeks without external or solar power. As data is collected, it is sent over the GSM 

network to a server in STAR Lab, where the data is uploaded to the Digital Roadway 

Interactive Visualization and Evaluation Network (DRIVE Net) developed by the Smart 

Transportation Applications and Research Laboratory (STAR Lab) as a data sharing, 

modeling, and online analysis platform. This approach to data collection allows for real-

time information flow to the users while maintaining a level of privacy. 

Multiple tests were conducted in a variety of locations, testing the device’s ability to 

measure travel times in freeway, arterial, and highway conditions. An extensive test was 

conducted on SR-522 in Seattle, Washington, where the travel times obtained from 

Bluetooth devices were compared to those collected by Automatic License Plate 

Recognition (ALPR) devices mounted at intersections. Error analysis was performed on 

the resulting data, which produced a set of recommendations for future Bluetooth 

deployments:  
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(1) Bluetooth-based MAC address matching is an effective, low cost means for travel 

time data collection. Bluetooth-based travel times are sufficiently accurate for most 

transportation applications. However, because slower vehicles have a better chance to be 

detected by Bluetooth readers, Bluetooth-based travel time tends to slightly overestimate 

travel time.  

(2) A site-specific evaluation may be necessary to ensure that the measured travel 

times reflect the desired delays – nearby signals may superimpose additional travel time. 

Extraneous sources of delay, such as bus stops, should also be considered.  

(3) Combinations of sensors working in tandem help reduce error in most cases. 

Tandem setups greatly increase the detection and matching rates, which is important for 

time-critical applications such as real-time travel information.  

(4) Sensor configuration can significantly affect the performance of the Bluetooth-

based travel-time collection system, especially if the chosen corridor has a short travel 

time. The travel time data collected using Bluetooth sensors along the 0.98 mile long 

corridor tested in this study produced average errors between 2.4 and 11.4 seconds (4% to 

13%) when compared to aligned ALPR sensors. 
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1 INTRODUCTION 

1.1 BACKGROUND 

Travel time is considered to be one of the most important transportation metrics, as it is 

easily understood by roadway users. Travel time is one often directly conveyed to users 

through the use of Dynamic Message Signs (DMS), 511 and online systems to allow 

individuals to make choices about their routes. The Federal Highways Administration 

(FHWA) has encouraged jurisdictions to provide travel time estimates using existing 

DMS infrastructure (Paniati, 2004).  The Travel Time Handbook, published by the 

FHWA, provides an extensive overview of travel time data collection methodologies, 

listing three major means of obtaining travel time estimates for a corridor – “active” test 

vehicles, license plate matching and “passive” probe vehicles (Travel Time Data 

Collection Handbook, 1998). The handbook mentions platoon and video matching as 

some potential emerging methods, but the three primary technologies mentioned have 

been the most common means of obtaining travel time information for the past few 

decades. 

In the past few years a new methodology for obtaining travel time measurements 

has been generating interest. The growing popularity of mobile devices, combined with 

the wireless communications used to connect these devices to each other and the internet 

has allowed a Media Access Control (MAC) address-based tracking method to be 

developed. This approach relies on recording the MAC addresses of bypassing devices at 

one location and noting the time difference between matching MAC addresses at a 

different location. This approach is becoming very popular due to its significantly lower 
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overall costs, ease of deployment and relatively fewer privacy concerns when compared 

to the three traditional methods outlined in the Travel Time Data Collection Handbook 

(Turner et al., 1998). The lower costs are associated primarily with the lower cost of the 

Bluetooth reader as well as the fact that one device used to collect the MAC addresses 

spans multiple lanes, which is of significant advantage when compared to Automatic 

License Plate Recognition (ALPR) systems that require lane-based detection. 

Additionally, Bluetooth-based travel time data collection systems are easy to install and 

do not require high bandwidth for communications. When compared with Global 

Positioning Systems (GPS), the MAC address-based systems do not require willing 

volunteers with properly equipped vehicles whose GPS coordinates are constantly being 

recorded – the MAC address is broadcast freely to all surrounding devices. Users who do 

not wish to disclose their MAC’s location can simply turn off the broadcast function of 

their device, although it is nearly impossible to tie a particular MAC to an individual. 

Although the MAC address-based collection techniques have significant 

advantages in most aspects, there are some drawbacks to their use. Relatively small 

sample size is an issue for some purposes – most studies using MAC address matching 

have found that they are able to match somewhere between five to ten percent of the total 

vehicle volume. An additional, and perhaps most serious, issue is the ambiguity of 

accuracy due to the inherent properties of the MAC address broadcast protocols. One of 

the most common protocols is known as Bluetooth, published by Special Interests Group 

(SIG). This protocol is common in mobile telephones and has been the focus of MAC 

address-based travel time estimation. The ambiguity of accuracy of the use of the 

Bluetooth protocol for travel time measurement comes from the random frequency 
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hopping characteristic of the protocol. As the protocol was designed to function in the 

same 2.4 GHz band as WiFi, a frequency hopping mechanism was implemented to 

prevent interference (Special Interests Group, 2010). The constantly changing frequency 

mandated by the Bluetooth protocol could delay the device connection time by up to 

10.24 seconds. This “connection time” complication is further exacerbated by the variety 

of ranges that a receiving Bluetooth sensor device may have. However, devices mounted 

in tandem could provide better results by increasing the detection range and detection 

time. These complications that arise in using MAC address-based travel time 

measurements have not yet been described in detail within the transportation research 

community.  

1.2 PROBLEM STATEMENT 

Obtaining travel time measurements using Bluetooth devices involves matching an 

observed MAC address between at least two locations. The difference in time between 

the two observations is the travel time. Because the Bluetooth readers are capable of 

detecting MAC addresses within a specific range, the travel times obtained can be 

thought of as zone to zone. However, ALPR travel times can be thought of as point to 

point travel times, as the window of video-based detection is relatively small. This is 

illustrated in Figure 1-1, where the dashed lines represent the Bluetooth detection zone 

and the squares represent the ALPR detection points. The average travel times obtained 

from both types of sensors can be expressed as: 

                                  (1) 

, ,
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( ( ) ( ))
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                                                                (2) 

 

where  and  are the ALPR-based and Bluetooth-based average 

travel times between nodes A and B during period , respectively; m and n are the 

number of observations by ALPR and Bluetooth based systems, respectively; t is the time 

stamp when a license plate or a Bluetooth device is detected. A vehicle’s MAC address 

may be detected multiple times by the Bluetooth sensor, so it is imperative that a 

consistent convention is taken, either matching first detection to first detection or last 

detection to last detection to mitigate detection errors.  

 

 

 

Figure 1-1: Segment composition 
 

The purpose of this study is to investigate the Bluetooth travel time errors that are 

inherent to the collection technique. In particular, the authors realize that the travel time 

reported by the Bluetooth device will be subject to the following sources of error: 
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 Spatial error: A Bluetooth-equipped vehicle may be detectable anywhere in the 

circle of the detection zone.  However, the detection zone radius varies with 

different Bluetooth detectors, in-traffic Bluetooth devices and environments. 

Furthermore, since Bluetooth signal is easily affected by home appliances, such as 

microwaves and wireless phones in residential areas (Bullock et al., 2010), the 

detection zone formed by an omni-directional antenna is usually an irregular 

shape rather than an ideally round circle area.  

   

 Temporal error: A Bluetooth-equipped vehicle can be detected anytime in a time 

range of up to 10.24 seconds after it enters the detection zone. It can also be 

missed entirely or be detected multiple times depending on the time it stays in the 

detectable area. The time until its first detection is determined by several factors, 

such as the probabilistic characteristics of channel hopping behavior, the signal 

strength from the Bluetooth device, sensitivity of the Bluetooth detector, etc 

(Special Interests Group, 2009).  

 

 Sampling error: This type of error results from the sampling process of the 

Bluetooth devices in the traffic. First, multiple Bluetooth devices in the same 

vehicle may be regarded as several vehicles and the same vehicle’s travel time 

will be duplicated in calculations. Second, fast-moving cyclists could be counted 

as vehicles, since Bluetooth-based method collects travel time data from multiple 

transportation modes, such as pedestrians, cyclists, and bus passengers in addition 
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to motor vehicles, unlike an ALPR reader that only collects motor vehicle travel 

time data.  

 

To analyze Bluetooth travel time error, ALPR data is used. Relative to the large 

detection zone of a Bluetooth device, an ALPR has a very small detection window, 

resulting in a small travel time error, particularly at higher speeds (Mizuta, 2007). 

Therefore, the ALPR collected travel times are chosen to serve as the ground-truth data in 

this study. After travel times are calculated from Equations (1) and (2), the absolute travel 

time error  for each period k can be calculated as 

 

                                                   (3) 

 

The absolute travel time error will be used to compare a variety of Bluetooth 

sensor configurations to determine which is most accurate when compared to ALPR 

sensors mounted at the same location. The short length of the corridor greatly exacerbates 

any detection errors, and while this ensures that the error will be of significance and its 

determination relevant.  

 

( )E k
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2 REVIEW OF PREVIOUS WORK 

Travel time information is regarded to be of primary importance in user information 

systems. As of 2005, over 300 million dollars have been invested into Dynamic Message 

Signs nationwide with the Federal Highway Administration (FHWA) recommending that 

the default message (when higher priority information is not available) should state 

estimated travel times to popular destinations. Such systems have gained much support 

from the public as well, with 85-90% of roadway users responding favorably in cities to 

implement such systems, such as Seattle and Salt Lake City (Meehan, 2005). However, 

the quality and usefulness of the DMS-based travel time information greatly relies on 

travel time accuracy. Inaccurate travel times can have a detrimental effect on the system, 

as users lose trust in the posted travel times and do not alter their decision based on the 

information provided. Thus, understanding the accuracy of the available means of 

collecting travel time information is critical. The FHWA guidelines suggest a maximum 

error of +/-20%, with an ideal goal of +/-10% error. An overview of current travel time 

data collection methods and their associated error sources follows. 

2.1 PROBE VEHICLE-BASED TRAVEL TIME ANALYSIS 

Probe vehicle based analysis relies on a willing volunteer vehicle, or set of vehicles to 

provide travel times that are encountered along the corridor in question. Probe vehicles 

may be simply hired vehicles that drive the corridor and report travel time or can be GPS-

equipped vehicles that relay their exact coordinates from which corridor travel time 

information can be extracted. This type of data collection has been fairly expensive in 

past, involving the use of special vehicles and hiring drivers, but has recently become 
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much more affordable due to increased use of GPS among fleet vehicles as well as the 

capability of purchasing GPS data from routing service providers such as TomTom or 

Google. While individual, representative, “pilot” vehicle results can be very accurate, 

results coming from fleet services such as taxis and delivery trucks may be significantly 

different, depending on the number of stops the driver makes. Additional concerns can be 

raised for GPS data coming from freight trucks, as their speeds tend to be different from 

passenger cars under identical conditions. Another potential drawback of using GPS 

probe vehicle data is the relatively small sample size that can be attained. Test vehicle 

runs often represent an insignificant fraction of the total volumes and fleet-based GPS 

penetration rates are also quite low if one considers the size of the whole traffic 

population.  

2.2 LICENSE PLATE READER-BASED TRAVEL TIME ANALYSIS 

ALPRs extract travel time data by reading license plate numbers at one location and 

matching them with those read at another using Optical Character Recognition (OCR) 

software. This approach provides a nearly complete record of the vehicle populations 

within the lane of analysis, with detection rates of up to 98% possible using properly 

mounted cameras (Mizuta, 2007). The accuracy of this approach is very high due to a 

very limited detection zone and nearly instant recognition, however false positives may 

occur due to an improper OCR match, resulting in erroneous data. Such error rates have 

been noted to be around 8%. (Pokrajac, 2009).  

ALPR systems demonstrate some of the most accurate results; however their cost is 

often prohibitively high. In order to instrument a four-lane arterial, a minimum of 8 

sensors is needed (4 at each corridor location, 2 in each direction). Sensor prices have 
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been around $10,000 apiece, resulting in an $80,000 price tag that does not yet include 

mounting arms/booms and installation costs. The expenses involved with such systems 

have resulted in their limited deployment, despite their advantages in accuracy. 

2.3 TRAVEL TIME ESTIMATION USING HISTORICAL DATA 

Travel time estimation using historical data in conjunction with available sensor data, 

predominantly loop, has been a popular means of estimating travel time. Speeds obtained 

from individual loops using an average vehicle length are extrapolated over the corridor 

and the corresponding travel times are computed and compared against historical data 

(Monsere et al., 2006). This approach requires existing sensor infrastructure as well 

records, and thus may not be applicable in all corridors; however the greatest concern is 

one of accuracy. A study by Monsere et al. shows that on average the link travel time 

estimates obtained by such an approach are within the FHWA-suggested 20% error 

margin. However, the study found that incidents and special events create situations 

where this approach is no longer within the accepted accuracy range. 

2.4 MAC ADDRESS-BASED TRAVEL TIME ANALYSIS 

The increasing ubiquity of electronic devices in our daily lives, combined with the need 

for those devices to communicate among each other has created a steady stream of 

information that is generated and maintained around our immediate vicinity. This has 

since become a lucrative information source for all those wishing to determine travel 

patterns of individuals, with tracking happening in zoos, shopping malls and airports 

(Bullock, 2010). Of the several available data exchange protocols available, Bluetooth 

has become by far the most popular. The transportation community has become 
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increasingly interested in Bluetooth tracking, particularly for the collection of travel time 

data (Ahmed et al., 2008; Wasson et al., 2008; Tarnoff et al., 2009; Haseman et al., 2010; 

Haghani et al., 2010 and Quayle et al., 2010). Tracking via Bluetooth provides an 

inexpensive and simple means of collecting data that could otherwise be obtained using 

probe vehicle or ALPR only. Thus, the number of jurisdictions that are interested in using 

Bluetooth sensors has increased drastically with applications ranging from work zone 

delay estimations (Haseman et al., 2010) to facility improvement “before and after” 

studies and traveler information systems.   

The popularity of the approach can be attributed not only to the significantly 

lower costs of data collection, but also to the relative ease of the sensor construction and 

customization. In fact, there appears to be at least half a dozen groups in the U.S. that are 

now manufacturing their own Bluetooth sensors (Traffax, TraffiCast, CalTrans, 

WSDOT/UW, TTI, Kittleson). Although the basic hardware for these devices may be 

similar, the antenna choices (physical size, directional properties or gain) and mounting 

strategies vary. While this creates a good opportunity for innovation and experimentation, 

relatively little research has been done to systematically evaluate the effects of these 

variables on the detection accuracy of the devices. Haghani et al. compared Bluetooth 

travel time with floating car data, demonstrating that the travel times collected by 

Bluetooth sensors are not significantly different from actual travel times (Haghani et al., 

2010).  

Even though the Bluetooth-based method has been demonstrated on freeways and 

arterial corridors, several important issues have not been addressed by previous studies. 

The first one is the temporal error introduced by the channel scan process. Bluetooth 
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splits the 2.4-GHz band into 79 channels with 32 of them used for detecting nearby 

devices during the discovery process. Typically, a Bluetooth detector sends a message to 

each channel repeatedly and waits for the reply from the nearby devices. Although the 

discovery process takes about 5 seconds on average, it may take up to 10.24 seconds in 

theory (Huang and Rudolph, 2007). In other words, a Bluetooth device may be detected 

at any time from 0 to 10.24 seconds after it enters the detection range, resulting in errors 

in travel time estimation.  

The second issue lies in the spatial uncertainty regarding when a Bluetooth MAC 

address is registered. The Bluetooth-based method is subject to various spatial errors 

because of different device types, antenna types, and geometric configurations of 

Bluetooth detectors. Given the above spatial and temporal uncertainties, the accuracy of 

Bluetooth-based travel time measurements is unclear to the researchers and practitioners. 

The last issue relates to noisy sources of MAC addresses. Detected Bluetooth devices 

may be carried by passenger cars, buses, bicycles, or pedestrians. Proper filtering 

procedures must be applied to screen out the travel time measurements from 

transportation modes other than those of interest. Therefore, an in-depth analysis of errors 

in Bluetooth MAC address-based travel time data is important for understanding the 

limitations of this new technology.  

Error modeling has been widely employed for sensor evaluation and calibration 

(Feng and Potkonjak, 2006). Recently, Bluetooth error models have been developed by 

Hao-Hsiang and Ling-Jyh (2008). However, the analytical models only considered the 

error resulting from the theoretical channel hopping process using Markov chains. Such 

models are difficult to use for real-life applications and are not directly helpful for 
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understanding the errors associated with the travel time data collected by the Bluetooth-

based method.  

This investigation attempts to better characterize the error that is inherent to the 

Bluetooth detection technology by formulating an initial relationship between error and 

antennae type and strength and mounting configurations. License plate matching systems 

are used to provide ground-truth results regarding travel time data. The objectives of this 

study were as follows:  

 Develop a Bluetooth MAC Address Detection (MACAD) system; 

 Extract travel time data for a highway section using Bluetooth MAC address 

matching; 

 Evaluate the travel time data error of the Bluetooth-based method by comparing 

travel time data between those extracted from Bluetooth MAC address matching 

and those resulted from ALPR;  

 Conduct a thorough investigation on error sources of the Bluetooth-based method; 

and 

 Propose error control guidelines for Bluetooth-based travel-time data collection. 

 

 

3 SYSTEM DESIGN AND DEVELOPMENT 

3.1 SYSTEM DESIGN 

As of early 2009, there were very few commercially available Bluetooth readers on the 

market, with their accuracy levels largely untested and unknown. Furthermore, in order to 
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understand Bluetooth-based travel time measurement errors, a number of different 

configurations involving different antennae had to be tested, requiring a custom solution. 

Therefore, a significant amount of effort was invested into designing and testing a device 

that would be not only able to perform well but was also very modular. Additional 

considerations were made for the devices’ eventual professional use, allowing not only a 

variety of antenna choices but also power and communications options.  

 

3.1.1 Design Evolution 

Throughout the project, the designed MACAD device has gone through two version 

changes and a number of upgrades. Figure 3-1 outlines the evolution of the device 

throughout the year-long project. The first version of the device was designed based on a 

Gumstix platform. The Gumstix platform provides a full Linux-based operating system 

running on a 600 MHz processor, all on a footprint about the size of a stick of gum 

(Gumstix, 2010). The device was powered by eight “D” cell batteries which allowed it to 

function continuously for 40 hrs. At the time an 8 dBi “rubber duck” external antenna and 

a 12 dBi in-lid antenna was used with a DCE-ANT NEMA 6 rated enclosure. Although 

this setup provided ample processing power and functioned well, there were concerns 

about the relatively short running time as well as the use of “D” cell batteries in wet 

environments, which was not recommended by WSDOT field engineers.  

To reduce power consumption, a 60 MHz processor was chosen for the second 

version of the device (V2.0). This greatly increased run time, allowing the device to 

operate for 5 days on just six “D” cell batteries. However, concerns about oxidation of 

the batteries, as well as the general wastefulness of single-use batteries prompted a 
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rechargeable battery-based system. Version 2.1 of the system included a Lithium-Iron 

(LiFE) rechargeable battery and an N-Male interface that allowed for a variety of 

waterproof, external omni-directional Laird antennae to be mounted on the device.  

 After completing V2.1, questions arose about data communication – previous 

versions have been saving the data onto MicroSD cards which had to be extracted prior to 

data analysis. Although this was convenient for short tests, additional information during 

longer tests was seen as an advantage. Eventual practical deployment of the device also 

would require a means to transfer data in real time, allowing for use in conjunction with 

user information systems. A GPS/GSM module was added to the device to resolve 

communications as well as clock synchronicity issues. Finally, a custom board was 

designed to hold all of the components and yet another battery was chosen. The reasoning 

behind switching from LiFE to Lithium Polymer (LiPo) batteries was mainly practical – 

LiPo batteries could be charged significantly faster, on the order of hours, compared to 

days when using LiFE batteries. With the design finalized, four units were produced for 

field testing. The exact end product is described in greater detail in the following section.  
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than most users. This creates a delay that is not experienced by other users, thus resulting 

in an outlier. Since the additional delay is unlikely a factor of the roadway design or any 

other transportation considerations, it is of little interest in the current scope. This type of 

outlier is often easy to recognize and is present in both ALPR and MAC address matched 

travel time data. An additional source of outliers is present only in ALPR data – as 

mentioned earlier errors in the OCR analysis of license plates can result in matches 

between plates that are similar in appearance, but are in fact unique (such as plates 

containing the number “1” and the letter “I”.) Although the chances of such an error are 

quite low (8%, as mentioned before), the resulting errors can cause travel times that are 

not representative of the general pattern. Multiple modes present on the same corridor can 

also be a cause for outliers when one is looking at auto-only travel times. Since there is 

no way to discriminate between the modes using MAC addresses alone, the 

discrimination step occurs during the filtering of the travel time data. Procedures used to 

screen and filter travel time data obtained from MAC address readers are described in the 

following section.  

 

3.2.2 Data Filtering 

A customized program used to process both ALPR and Bluetooth MAC address data was 

written in C# to facilitate analysis. A screen shot of the software is given in Figure 3-5. 

The software system is capable of processing the data manually, using two or more 

ALPR and/or ALPR text files for matching (obtained from the MicroSD cards mounted 

in the MACAD devices), or doing it automatically using data that is sent to the server 
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demonstrate any congestion delay peaks, but large enough to smooth over occasional 

outliers mentioned above. 

 Offline analysis for small data sets is performed with Excel – the software system 

automatically outputs aggregated data from all included sources as an “.xls” file. Online 

analysis is performed using Google Maps API tools, which an interactive timeline 

interface, allowing the users to view ongoing trends within a specified time window and 

provides basic statistics such as average trip time and standard deviation for the selected 

time window. 

 

4 SYSTEM TESTING 

4.1 SR-520 FREEWAY TEST IN SEATTLE, WA 

One of the primary concerns with Bluetooth detection was the device’s ability to capture 

fast moving vehicles. As mentioned before, since the Bluetooth protocol requires up to 

10.24 seconds to detect a vehicle, it is imperative that the detection range of the MAC 

address collection device is sufficient to work at high speeds, for example is a vehicle is 

moving at 60 mph, the detection zone needs to be about 900 ft (275 m) in diameter to 

guarantee that the vehicle is in range for 10.24 seconds. A freeway test was done on 

February 22nd, 2009, early in the development cycle, to ensure that sufficient data could 

be collected when fast moving vehicles were present. The chosen corridor was a 3-mile 

long section along the SR-520 floating bridge in Seattle, WA at 24th Ave and 76th Ave 

overpasses. The speed limit on the bridge is 55 mph. Average speeds in free-flow 

conditions tend to be around 60 mph. A portable ALPR system was loaned from WSDOT 
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vehicles at the 24th Ave location and 1368 vehicles at the 76th Ave location. It is 

important to note that the ALPR sensors were capturing just one of the two lanes, and 

only one direction – westbound. The number of unique MAC addresses obtained at the 

two locations were 432 and 190, respectively. A shielding effect of one of the concrete 

barriers on 76th Ave overpass is thought to be responsible for the lower detection rate. 

The matching rate was 61% for the corridor, 116 matches (of a maximum possible 190), 

compared to the ALPR system’s 39% or 533 matches (of a maximum possible 1368). 

Although the ALPR system was able to obtain more samples from a given direction, the 

MAC address method was capable of covering all lanes and both direction while 

providing a higher matching rate.   

 The acquired travel times were aggregated and filtered as described above and the 

two means of collecting the data were compared. Figure 4-2a shows the comparison 

between ALPR and Bluetooth travel times on SR-520 in the westbound direction (the 

only direction measure with ALPRs). The average error for the hour-long test was 9.6%, 

ranging from 6% to nearly 20%. One of the most noticeable trends is the fact that all the 

error obtained was positive. In other words, Bluetooth based travel time estimates were 

consistently above the “ground truth” ALPR measurements. However, in this test the 

exact location of the centerlines and detection zones of the Bluetooth and ALPR sensors 

was not known, thus a compensating adjustment had to be made. The two data sources 

were also compared by adjusting the two datasets to a common mean. After a mean shift 

of .293 minutes, the error rates reduced to a maximum of 9.4% and a minimum of -

3.95%, well within the FHWA recommended values. Figure 4-2b shows the resulting 

error and Bluetooth travel times after adjustment. 
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Although the SR-520 test site would have been ideal for longer testing using a 

number of configurations, as is done with SR-522, the use of a portable ALPR unit 

required in-person data collection at both ends of the corridor. Further restrictions were 

encountered due to WSDOT security concerns on freeway overpasses, therefore allowing 

only an hour of testing to be performed. SR-522 is equipped with permanently deployed 

ALPR units, making data collection there significantly easier.  

It should be noted that the Bluetooth readers were mounted at a height of about 30 

feet above the roadway in this scenario. This results in a significantly larger detection 

zone compared to what is experienced when the sensors are mounted near ground level 

(about 5 to 7 feet). The antennae used in the experiment have downward tilt of about five 

degrees, so the range of the antenna increases with height above ground plane. With the 

sensors mounted at a height of 30 feet, the detection range theoretically grows to about 

400 feet (radius), giving an 800 foot detection zone, or the capacity to detect about 80% 

of the “detectable” traffic, which is consistent with the 60% matching rate observed. 
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4.2 RURAL TESTS IN RICHLAND, WA AND YREKA, CA 

An additional concern of using MAC-address based data collection was the overall 

penetration rate of MAC broadcasting devices. Rural communities feared that the 

population demographics and characteristics in metropolitan regions were sufficiently 

different and perhaps more “tech savvy” than those living in rural areas. It was therefore 

believed that MAC-based data collection would be less effective due to smaller sample 

sizes. A smaller city in rural Eastern Washington and a rural section of I-5 in California 

were tested to determine the validity of such concerns. 

Richland, WA is a city of about 47,000 and, despite being located in a rural setting, 

is near a significant amount of hi-tech industry (Washington State Office of Financial 

Management, 2009; Weiss and Schmitt, 2009). SR-240 and the intersections of Van 

Giesen St and Swift Blvd were the primary focus sites in the study, as the mile-long 

corridor experiences significant peaks in traffic volume during morning and afternoon 

rush periods. Figure 4-3 shows MAC address based travel time data collected by the 

MACAD devices on July 12th through 14th in Richland. Southbound travel time values 

are positive, while northbound values are shown as negative. There appears to be a 

sufficient amount of data present within the city. The data clearly depicts the morning 

southbound peak (larger concentration of devices), yet it causes little delay. The 

afternoon peak however, is clearly visible in the opposite direction and increases travel 

times by up to three times. This type of information is useful for growing rural cities such 

as Richland and shows that there is sufficient MAC broadcasting devices in such areas to 

consider further studies or deployment. 
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5.1.2 Corridor Spectrum Noise Testing 

Spectrum data was collected for this experiment to ensure that there was not a significant 

source of background noise that would severely impact detection quality. Since the 

Bluetooth protocol uses spread-spectrum frequency hopping, the device skips from 

frequency to frequency, thus largely not impacted by local sources that may be operating 

within a narrow band of the 2.399 MHz to 2.483 MHz spectrum. However, additional 

Wireless Local Area Networks (WLAN) located at the same location could significantly 

impact the detection performance by occupying large portions of the spectrum and 

rendering it unusable. Since WLAN networks have only 11 different channels, each of 

which occupies 22 of the 79 available Bluetooth channels (Hewlett Packard, 2002), the 

presence of multiple WLAN networks in the area could significantly reduce performance 

if the signal strengths of those networks is sufficient. It is important to ensure that the test 

sites chosen do not contain significant contamination of the 2.4 GHz spectrum.  

Figure 5-2 below shows the spectrum characteristics at the 170th ST NE site. Each 

point on the graph represents a one-hour average along a 327 KHz strip of the spectrum, 

for a total of 256 strips. The location does appear to have several active networks that 

occupy some bands, but the signatures are narrow, thus creating little competition for 

Bluetooth devices. More importantly, the magnitude of the detected networks is very 

small, with the highest peaks reaching well under -100 dBm. Signals below -100 dBm are 

considered to be out of range for the directional and omni-directional antennae, thus 

having little impact on the detection speed.  
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5.2 MAC ADDRESS DATA AQUISITION 

Up to four MACAD devices were used to collect travel time data, using a combination of 

antennae types and strengths and on-site placement positions. Table 5-1 shows the 

variables considered in this study. Three types of antennae were used in testing, a 7 dBi 

weatherproof omni-directional antenna, a 9 dBi weatherproof omni-directional antenna 

and a 12 dBi directional, 35 degree vertical and horizontal spread antenna mounted in the 

lid of an MACAD device. These are denoted as “O7”, “O9” and “D12” in Table 5-1.  

The number of detectors at each location, up to two, is also considered as a 

variable. Finally, when two detectors were mounted at the same end of the corridor, they 

were either mounted one across from another (opposite), denoted as “O” or at the exact 

same location, as denoted by “S”. If only one sensor was mounted, “S” is used to indicate 

no overlap. Lane-ft covered represents the cumulative linear feet covered by the sensor 

configuration. These values are estimations based on manufacturer specifications and 

empty-field range testing. The values were computed by overlaying the approximate 

sensor ranges over the test site and measuring the lengths of the through lanes covered by 

the sensors. Figure 5-5 shows the lane-ft covered by the 12 dBi directional sensor at the 

NE 170th St location. The clover-like shape represents the 12 dBi directional antenna 

bloom as specified by the manufacturer. A total of 11 different configurations were tested 

and are summarized in Table 5-1 below.  



Figur
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as surrogates for volume data. Details of the installed systems can be found in (PIPS, 

2009). 

 

5.4 TEST CONFIGURATIONS 

Detectors were conveniently mounted at a height of about 1.5 meters (5 ft) above the 

ground on roadside signage poles. Directional sensors were pointed across the roadway, 

near the westbound side of the route, as close as possible to the westbound ALPR 

detection zones. Figure 5-6 shows all of the possible sensor footprints that were tested in 

this study and their approximate detection zones. Bluetooth sensor locations are marked 

with an “x” and ALPR detection zones are shown as rectangles. These footprints were 

permutated through 11 different configurations that represent the potential variability of 

setups, bearing in mind the locations of the ALPR sensors. The directional antennae, for 

example, were only mounted near the ALPR detection zones as other placements were 

unlikely to produce better results. The westbound side provided convenient mounting 

locations for numerous sensors and was thus chosen as the primary focus of this study. 

The estimated ranges for the 7dBi, 9dBi omni-directional and 12dBi directional antennae 

are 40 meters (131 ft), 70 meters (230 ft) and 40 meters (131 ft), respectively. These 

sensors were configured to try and match the westbound ALPR detection zones as closely 

as possible. Eastbound travel times picked by these sensors are likely to be more different 

from their ALPR counterparts as they are separated by an intersection. This is clearly 

shown in the collected data and the results are presented separately. 

Permutations with identical setups at each of the two locations (NE 170th St and 

61st AVE NE) were primarily tested, but two configurations (1 and 2) with disparate 
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6.1 ERROR ANALYSIS WESTBOUND 

 
6.1.1 Descriptive Analysis Westbound Direction 

Figure 6-1 shows the 1-hr average travel time results in the westbound direction. Red 

points and lines are Bluetooth (BT) travel times while blue ones are ALPR travel times. 

The testing intervals for each configuration are labeled – configurations 10 and 11 run in 

parallel with 5-9. To differentiate them from other configurations their results are shown 

in orange. Trend lines are generates using a 5-point moving average window. Overall, the 

sensors follow the travel time trends recorded by the ALPRs. It can be seen that tandem 

sensor configurations do a better job of following the trends.   

Figure 6-2 demonstrates the 1-hr averages of error rates and volumes encountered 

during testing in the westbound direction. Total volume in both directions is shown in 

blue and error in red. The graph is once again segmented into the testing configurations 

and error rates for configurations 10 and 11 are shows separately in orange. Trend lines 

were generated using a 5-point rolling average. Since the westbound approach had only 

one mounting location that was centered at the intersection approach (NE 61st AVE 

(Opposite), see Fig. 6-1), the results show that although there is some correlation with 

volume, there are configurations that are not as affected. 

 



  

Figur
+ ora

re 6-2: Trave
ange) (1hr av

el time comp
verages) 

parison west

 40

tbound SR-5522 (ALPR –– blue, BT – red 



Figurre 6-3: Westbbound SR-522 error and

 41

d volume (1hhr averages)
 



 42

 Taking a closer look at the westbound data, it can be seen that configuration 5, 6, 

7 and 8 appear to be almost unaffected by the additional intersection delay. These 

configurations contain a directional antenna that successfully discriminates the vehicles 

waiting at the intersection approach, outside its narrower range. Single sensor layouts 

also appear to have a lower error. This is expected, as the smaller overall footprint 

reduces error, which is especially true in the westbound direction, since the MACAD 

directional detection beam is focused right over the ALPR detection point. This smaller 

footprint however reduces the total available matches, thus reducing the accuracy of more 

precise 15-min intervals examined in the next section. 

 
6.1.2 Error Modeling Westbound 

Initial efforts in interpreting the data focused on modeling the detection rate and relating 

that to the accuracy of the acquired travel times. However, upon looking at the data 

collected at the sites chosen in this study, there was no immediate correlation between the 

detection rate and accuracy. This is likely due to the effect of the delay superimposed by 

the signal lights. To circumvent this issue, a more generic approach to error modeling 

was taken, considering all possible variables and their relationship with accuracy. A 

multivariate regression model was developed for each direction to determine which 

variables are significant. A 15 minute time window was chosen as an analysis element to 

show variation in traffic patterns while minimizing the effect of contamination by signal 

delay. All variables were aggregated to 15 minute intervals. Ten variables were 

considered in all: 

(1) Volume (Categorical: <500[LOW], <1000[MED], >1000[HIGH]) 

(2) Detection Rate (Percentage of Volume) 



 43

(3) Matching Rate (Percentage of Volume) 

(4) Lane-ft Covered by All Sensors in Configuration  

(5) Directional Antenna (Categorical: 0 [no],1 [yes]) 

(6) Opposite Side Tandem Sensors (Categorical: 0,1) 

(7) Sensor 1 Antenna Strength (Categorical [dBi]: 7,9,12) 

(8) Sensor 2 Antenna Strength (Categorical [dBi]: 7,9) 

(9) Sensor 3 Antenna Strength (Categorical[dBi]: 7,9) 

(10) Sensor 4 Antenna Strength (Categorical[dBi]: 7,9,12) 

A generic model was first attempted using all variables: 

 

	 	 	     (5) 

 

where Ek is the absolute error in fractional minutes, V is the volume in veh/hr, D is the 

detection rate in percent, M is the matching rate in percent, L is the sensor lane-ft 

coverage, R is the directional variable, O is the opposite side variable and S1-4 are antenna 

strengths of sensors in dBi  1-4.  is the regression error term. The resulting model for 

the westbound direction and their variables, with relative significance levels is presented 

in Table 6-1. 
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westbound vehicles waiting at the light. The NE 170th location was configured to avoid 

this issue. 

6.2 ERROR ANALYSIS EASTBOUND 

 
6.2.1 Descriptive Analysis Eastbound Direction 

The eastbound side of the test bed shows greater variations and errors. In Figure 6-

3, the single sensor configuration (shown in orange) is notably farther from the ALPR 

trend than the tandem configuration data obtained concurrently.  

As can be seen in Figures 6-4, there is a greater effect of volume on the accuracy of 

the Bluetooth MAC address readers due to the signal delay. Eastbound travel times are 

affected much more than westbound ones, as most of the configuration’s mountings have 

the detection zone centered near the eastbound signal approaches. This results in more 

reads near the approach areas and progressively less as the vehicle leaves the detection 

zone. This skews the results towards reflecting the intersection delay. 
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volume (1hrr averages) 
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for most configurations – in such cases, antenna strength makes more of a difference, as 

smaller antennae have a harder time collecting samples.  

It is worth noting that detection rate was not shown to be significant in either 

direction. This was somewhat unexpected, and discouraged the use of the initial 

detection-based model outlined in the proposal. There may be a couple explanations for 

this occurrence. First, there may have been too much noise from non-vehicular sources 

that increased the detection rate without providing subsequent matches. Second, the 

diversion rates for the corridor may have been too high, once again resulting in detections 

without matches. Discussion of detection and match rates for each configuration is 

presented in the following section. 

6.3 CONFIGURATION COMPARISON 

 

Further insights into the performance of the MACAD devices can be gleamed from 

comparing the different configurations tested. In doing so, one can determine the most 

successful setup that was capable of providing the most accurate results, despite of the 

additional issues caused by the signal delay. A discussion of the performance of each 

configuration is given in the following section, once again separated by direction. While 

examining the data, it is imperative to recall that the tested corridor is less than 1-mile 

long, which results in the largest footprints taking up nearly 20% of the corridor. 

 
6.3.1 Westbound 

 
Table 6-3 presents a basic comparison of the tested configurations based on error 

statistics – average error, standard deviation of error, and min and max error in terms of 
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minutes. The statistics are computed on 15-min intervals. Of the configurations tested, 

configuration 6 (9 dBi omni and 12 dBi directional) appears to have some of the best 

results, with a low average error and the lowest deviation in both the westbound and 

eastbound directions. Configuration 1 (a mix of 7 and 9 dBi antennae as singles) also 

fares well with the lowest absolute error, low standard deviation and a low maximum 

error. It can be seen from Table 6-3 that the absolute value of the max error is 

significantly higher than the absolute value of the minimum error, supporting a case for 

positive bias.  

 
Table 6-3: Westbound 15-minute aggregate error statistics by configuration 

Abs. Error (sec)  Std. Dev (sec)  Max Error (sec)  Min Error (sec) Config. 

1  2.56 5.73 12.17  ‐8.58

2  10.94 7.35 25.25  ‐2.33

3  7.58 6.09 20.92  ‐6.92

4  8.95 7.33 25.25  ‐5.75

5  6.10 9.72 33.42  ‐13.42

6  6.13 4.38 16.67  ‐0.42

7  3.64 8.19 19.33  ‐8.17

8  11.31 10.83 39.00  ‐4.58

9  9.67 8.02 36.25  ‐6.83

10  6.08 7.78 22.25  ‐14.58

11  3.82 8.94 37.50  ‐11.00

Average TT: 91.8 sec 

  

Figure 6-6 shows the detection and matching rates for each configuration in the 

westbound directions. The matching and detection rates proved to be consistent with 

earlier studies (e.g. Malinovskiy, 2010), although certain configurations, notably tandem 

ones, had significantly higher detection and matching rates. The rates were obtained by 

counting the number of detections or matches happening within a particular 15-minute 
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time window and normalizing the value by the sum of ALPR volumes in both directions. 

As ALPR data was available for only one lane, the values were doubled in an attempt to 

reflect the total volume in all four general purpose lanes. Transit volume was ignored in 

this study. The westbound direction captured an average of 10.8% of the total estimated 

volume with 4.1% of the estimated volume matched. 

It is worth noting that both matching and detection rates can be over 100% 

theoretically, as contamination from non-vehicle sources may occur and vehicles can 

contain more than one device, resulting in an over-estimation.  
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6.3.2 Eastbound 

Table 6-4 presents the basic configuration comparison for the eastbound direction. As 

expected, the results are different. The average error increases from 7.2 seconds to 19.8 

seconds, reflecting the additional error from the intersection delay. However, it should be 

noted that configuration 6 still manages to demonstrate a relatively low error of 13.6 

seconds, although this is still higher than any westbound configuration.  

 
Table 6-4: Eastbound 15-minute aggregate error statistics by configuration 
Eastbound 

Abs. Error (sec)  Std. Dev (sec)  Max Error (sec)  Min Error (sec) Config. 

1  28.20  17.34 61.92  1.08

2  20.79  10.95 40.33  0.68

3  19.36  10.11 52.52  ‐5.32

4  17.41  11.12 45.73  0.38

5  21.72  12.62 47.02  ‐1.23

6  13.57  7.97 31.22  ‐2.88

7  23.53  23.02 97.12  1.08

8  8.40  6.95 20.13  ‐6.28

9  13.80  9.93 41.18  ‐13.03

10  33.16  22.98 114.52  ‐1.35

11  19.34  9.23 39.25  ‐1.98

Average TT: 96.0 sec 

 

For this direction, the sensors captured an average of 11.4% of the estimated volume. The 

detections resulted in travel time matches for 5.2% of the total estimate volume. Figure 6-

7 shows the detection and matching rates of the 11 configurations for the eastbound 

direction. Similar trends as the westbound direction persists, with tandem configurations 

having significantly higher detection and matching rates. 
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6.3.3 Configuration Comparison Summary 

 
In general, configurations with higher matching rates provided more accurate results, 

particularly in the better aligned westbound direction. An additional intersection (47th St) 

that allows for diversion from the westbound direction only is likely responsible for the 

lower matching rates in the westbound direction. Configurations 5 and 6, or combinations 

of 7 dBi and 9 dBi antennae with a 12 dBi directional antennae mounted in the same 

location did consistently well in both travel directions, obtaining some of the highest 

matching and detection rates. Configurations 5 and 6 were also among the most accurate, 

with 6 being the closest to ground truth in part due to its larger antennae which allowed it 

to obtain a lower error rate in the eastbound direction. Although there is a directional 

component to this which may increase error in the eastbound direction, the sensors are 

mounted at the same point in each location, improving the accuracy in the westbound 

direction. The linear coverage of the sensor footprints is also modest compared to fully 

omni-directional configurations. Therefore, the findings of the configuration analysis are 

fairly consistent with the modeling results. 
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7 CONCLUSIONS AND RECOMMENDATIONS 

Considering the properly aligned westbound results only, a few conclusions can be made 

about the use of Bluetooth sensors for travel time extraction. The overall error, detection 

and matching rates, suggest that a combination of sensors is worthwhile. Detection and 

matching rates tend to increase with optimal MACAD configurations, which results in an 

increase in accuracy. In all the experiments conducted, the MACAD Bluetooth 

methodology provided estimates that were sufficiently accurate, with slight 

overestimates. The extent of the over-estimation highly depends on the configuration and 

antenna type and installation location, as shown by the results of this study. Errors ranged 

from 4% to 13%, but it should be noted that longer corridors (over one mile) would not 

experience such drastic differences, as the 10.24 sec protocol window plays a smaller 

role. In this study additional error sources also contributed to such a wide range of 

possible errors. The short SR-520 experiment, described in Section 4.1, serves as a good 

example of how precise Bluetooth sensors can be on longer corridors without intersection 

delay and other potential contaminants. 

When using Bluetooth or other MAC-address readers, one has to be very careful of 

data contamination by intersection delay. Ideally, the sensors would be mounted mid-

block to prevent such contamination, but the location of the ALPR sensors dictated 

Bluetooth device locations in this study. Another potential contamination factor was the 

proximity of bus stops near the detector locations – if a passenger’s Bluetooth device was 

detected at the first location whilst they were on the bus, after which they have 

disembarked and walked past the first location, the travel times would be close to the 



 57

vehicle travel times, yet contain an additional source of error. This problem is 

exacerbated in areas with high-volume bus stops. 

7.1 CONCLUSIONS 

The use of Bluetooth readers to measure travel time provides a comparable alternative to 

ALPR technology and can be used with significantly less effort and lower costs. Shorter 

corridors however, do pose challenges for the Bluetooth detection scheme due to the 

inherent “zone to zone” detection paradigm offered by these sensors. In such cases it may 

be tempting to reduce the detection area in order to decrease the size of the detection 

zones and thus reduce the error. However, when the zones are reduced, the matching rate 

drops dramatically. In the experiments described above, configurations that used just one 

detector per site (thus significantly reducing the detection zone size) had less than half the 

matching rate of configurations that used two detectors per site, regardless of antenna 

choice. Of all the configurations attempted, combinations of omni-directional antennae 

with large detection zones provided the best results, with low absolute error and high 

matching rates. Combination configurations (4, 5, 6, 7, 8, and 9) had average matching 

and detection rates of 7.92% and 15.35%, respectively; while single-sensor (at each 

location) configurations had rates of 3.43% and 9.37% respectively. The higher detection 

rates may also increase due to extraneous sources, but the matching rates were shown to 

be statistically significant in reducing error.  

 Across all configurations, the reported Bluetooth travel time was 8.0% higher 

than the actual travel times reported by the ALPR sensors. All error rates encountered 

were well within FHWA’s recommendation levels. Although reducing the overall error 

was a concern, the main goal of this study focused on determining which configuration 
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will provide the lowest relative error, not minimizing the overall error. Lower overall 

errors can be accomplished using a more discerning filtering algorithm. The least error 

prone configurations (1,5,6 and 11) reported travel times that were, on average, 4-7% 

above the ALPR travel time.  

For the eastbound direction, additional intersection delay not considered by ALPR 

sensors is likely to have played a very significant role that contributed to the alignment 

issue, severely degrading the results. However, about half of the configurations tested 

were still able to produce results well under the FHWA threshold.  

Errors encountered during this study were almost always positive. This implies that 

there is still a bias towards slower vehicles within this corridor study. As alluded to in our 

prior studies (Malinovskiy et al., 2010), this is likely the result of the inherent nature of 

Bluetooth technology – there is bias towards slower vehicles that have a higher chance of 

being detected due to longer residence times within the detection zone.  

 

7.2 RECOMMENDATIONS 

Based on the obtained experimental results, several recommendations for error control of 

Bluetooth-base travel time collection can be made:  

 

1. Bluetooth-based travel times are likely overestimates, the error rate is dependent 

on a number of variables, including match rate. 

 

2. A site-specific evaluation may be necessary to ensure that the measured travel 

times reflect the desired delays – nearby signals may superimpose additional 



 59

travel time. Extraneous sources of delay, such as bus stops, should also be 

considered. 

 

3. Combinations of sensors working in tandem help reduce error in most cases. 

Tandem setups greatly increase the detection and matching rates, which is 

important for time-critical applications such as real-time travel information. 

 

4. Sensor configuration can significantly affect the performance of the Bluetooth-

based travel-time collection system, especially if the chosen corridor has a short 

travel time. The travel time data collected using Bluetooth sensors along the 0.98 

mile long corridor tested in this study produced average errors between 2.4 and 

11.4 seconds (4% to 13%) when compared to aligned ALPR sensors. 
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